Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 30(11): 103817, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37841665

RESUMEN

Numerous studies have shown that stress in plant cells and organelles with transport electron chains is related to RNA editing. The ATP synthase complex present in mitochondria plays a crucial role in cellular respiration and consists of several subunits. Among them is the b subunit, which is encoded by the mitochondrial atp4 gene. Computing-based analysis of the effects of RNA editing of the Withania somnifera atp4 gene in mitochondria leading to alterations in the b subunit of ATP synthase. Using the CLC Genomic Workbench 3, RNA editing analysis between the control and salt stress conditions was not significantly different. Depending on RNA editing, the tertiary structure model revealed a change in the states of the b subunit, reflecting differences in the central stalk and F1-catalytic domain. The study found that polar edits in the N-terminus of the b subunit allow for efficient H + ion selectivity and introduce a new coiled-coil alpha-helical structure that may help stabilize the complex. The most noteworthy finding of this study was the strong impact of these editing events on the tertiary structure of the b subunit, which has the potential to affect the ATPase activity and indicate that the editing in this subunit aimed to restore the original active protein and not as a response to salt stress.

2.
R Soc Open Sci ; 10(8): 230294, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37538749

RESUMEN

The development of cost-effective materials for fabricating electrodes is crucial for drug, pharmaceutical and environmental applications. This paper presents the synthesis and characterization of a novel polyketimine (PKI) membrane obtained by condensing partially of different weight percentages of oxidized polyvinyl alcohol and aminated polyether sulfone. Using the PKI membrane as a scaffold, we introduced laser-induced graphene electrodes (LIGEs) for the efficient electrochemical sensing of paracetamol (PCM), which serves as a model drug. Electrochemical measurements were conducted to assess the physico-chemical properties, including laser-induced porous graphene features, such as the heterogeneous electron transfer (HET) rate and electrochemically active surface area (ECSA). The obtained results demonstrate that the LIGEs exhibit excellent performance in PCM sensing, showing a linear detection range of 50-600 µM with a detection limit (LOD) as low as 14.3 µM and a good selectivity toward uric acid. Furthermore, the functionalization of the electrode surface with AuNPs improved the electrode physico-chemical properties (HET and ECSA) and lowered the detection limit down to 1.1 µM. Consequently, these affordable electrodes hold great potential for analysing other drugs and detecting heavy metal cations in various applications.

3.
Saudi J Biol Sci ; 30(7): 103703, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37389198

RESUMEN

There is evidence that RNA editing is related to plant cellular stress as well as electron transport organelles, such as mitochondria. The mitochondrial atp1 gene encodes the alpha-subunit of Atp synthase. Control as well as two periods of drought stress treatments were analyzed in the cDNAs generated from the mitochondrial atp1 gene of two cultivars of Triticum aestivum [Giza 168 (G168) and Gemmiza 10 (GM10)]. Following RNA-seq data assembly, atp1 cDNAs from the control (acc. no. OQ129415), 2-hour (acc. no. OQ129416), and 12-hour (acc. no. OQ129417) time points of the T. aestivum cultivar G168 were obtained. Control (acc. no. OQ129419), 2-hour (acc. no. OQ129420), and 12-hour (acc. no. OQ129421) samples all included reconstructed atp1 transcripts from Gemmiza 10. Atp1 transcripts were assembled using the wheat atp1 gene (acc. no. NC_036024). RNA-seq raw data was utilized to identify 11 RNA editing sites in atp1 in the tolerant cultivar Giza168 and 6 in the sensitive cultivar Gemmiza10. The significant difference in RNA editing observed between control and drought stress conditions in sites led to synonymous amino acids. This led to no change in tertiary structure between tolerant and sensitive cultivars. But the change was focused between produced protein and its correspondence sequence on DNA.

4.
J Inorg Organomet Polym Mater ; : 1-18, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37359388

RESUMEN

A series of transition metal complexes of alloxan monohydrate (H2L1) and ninhydrin (H2L2) have been prepared where metal ions are Fe(III), Co(II), Ni(II), Cu(II), Zr(IV), and Mo(VI). Different microanalytical techniques, spectroscopic methods, and magnetic studies were applied to assign the mode of bonding and elucidate the structure of complexes. All solid complexes are of 1:1 (M:L) stoichiometry and octahedral geometry except nickel (II) complexes exist in a tetrahedral geometry. FTIR spectral interpretation reveals that HL1 coordinates to the central metal ion in a bidentate ON pattern, whereas HL2 behaves as an alterdentate ligand through hydroxyl oxygen and carbonyl oxygen either C(1) = O or C(3) = O. The thermal behavior of some complexes was followed up to 700 °C by different techniques (TGA, DTA, and DSC) where decomposition stages progress in complicated mechanisms and are ended by the formation of metal oxide residue. Besides, biological screening involving antioxidant, antibacterial, and antifungal for ligands and some of their complexes was done. Moreover, four examined metal complexes displayed anticancer activity against hepatocellular carcinoma cells (HepG-2) but to different degrees. According to the IC50 values, Cu-ninhydrin complex, [Cu(HL2)(H2O)4].Cl has a better potency impact in comparison with cisplatin which was used as a reference control. This is in harmony with the molecular docking simulation outcomes that predicted a good binding propensity of the Cu-ninhydrin complex with hepatocellular carcinoma protein (2jrs). Therefore, the Cu-ninhydrin complex should be deemed as a potential chemotherapeutic agent for hepatocellular cancer. Supplementary Information: The online version contains supplementary material available at 10.1007/s10904-023-02661-5.

5.
Molecules ; 28(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241788

RESUMEN

Using the internal transcribed spacer (ITS) region for identification, three strains of Aspergillus terreus were identified and designated AUMC 15760, AUMC 15762, and AUMC 15763 for the Assiut University Mycological Centre culture collection. The ability of the three strains to manufacture lovastatin in solid-state fermentation (SSF) using wheat bran was assessed using gas chromatography-mass spectroscopy (GC-MS). The most potent strain was strain AUMC 15760, which was chosen to ferment nine types of lignocellulosic waste (barley bran, bean hay, date palm leaves, flax seeds, orange peels, rice straw, soy bean, sugarcane bagasse, and wheat bran), with sugarcane bagasse turning out to be the best substrate. After 10 days at pH 6.0 at 25 °C using sodium nitrate as the nitrogen source and a moisture content of 70%, the lovastatin output reached its maximum quantity (18.2 mg/g substrate). The medication was produced in lactone form as a white powder in its purest form using column chromatography. In-depth spectroscopy examination, including 1H, 13C-NMR, HR-ESI-MS, optical density, and LC-MS/MS analysis, as well as a comparison of the physical and spectroscopic data with published data, were used to identify the medication. At an IC50 of 69.536 ± 5.73 µM, the purified lovastatin displayed DPPH activity. Staphylococcus aureus and Staphylococcus epidermidis had MICs of 1.25 mg/mL, whereas Candida albicans and Candida glabrata had MICs of 2.5 mg/mL and 5.0 mg/mL, respectively, against pure lovastatin. As a component of sustainable development, this study offers a green (environmentally friendly) method for using sugarcane bagasse waste to produce valuable chemicals and value-added commodities.


Asunto(s)
Lovastatina , Saccharum , Humanos , Lovastatina/análisis , Celulosa/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem , Fermentación , Fibras de la Dieta/análisis
6.
Saudi J Biol Sci ; 30(3): 103600, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36874202

RESUMEN

Genomic studies not only help researcher not only to identify genomic features in organisms, but also facilitate understanding of evolutionary relationships. Species in the Withania genus have medicinal benefits, and one of them is Withania frutescens, which is used to treat various diseases. This report investigates the nucleotides and genic features of chloroplast genome of Withania frutescens and trying to clarify the evolutionary relationship with Withania sp and family Solanaceae. We found that the total size of Withania frutescens chloroplast genome was 153.771 kb (the smallest chloroplast genome in genus Withania). A large single-copy region (91.285 kb), a small single-copy region (18.373 kb) form the genomic region, and are distinct from each other by a large inverted repeat (22.056 kb). 137 chloroplast genes are found including 4 rRNAs, 38 tRNAs and 83 protein-coding genes. The Withania frutescens chloroplast genome as well as four closest relatives was compared for features such as structure, nucleotide composition, simple sequence repeats (SSRs) and codon bias. Compared to other Withania species, Withania frutescens has unique characteristics. It has the smallest chloroplast genome of any Withania species, isoleucine is the major amino acid, and tryptophan is the minor, In addition, there are no ycf3 and ycf4 genes, fourth, there are only fifteen replicative genes, while in most other species there are more. Using fast minimum evolution and neighbor joining, we have reconstructed the trees to confirm the relationship with other Solanacaea species. The Withania frutescens chloroplast genome is submitted under accession no. ON153173.

7.
Curr Issues Mol Biol ; 44(11): 5593-5604, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36421663

RESUMEN

Many eukaryotic and prokaryotic organisms employ RNA editing (insertion, deletion, or conversion) as a post-transcriptional modification mechanism. RNA editing events are common in these organelles of plants and have gained particular attention due to their role in the development and growth of plants, as well as their ability to cope with abiotic stress. Owing to rapid developments in sequencing technologies and data analysis methods, such editing sites are being accurately predicted, and many factors that influence RNA editing are being discovered. The mechanism and role of the pentatricopeptide repeat protein family of proteins in RNA editing are being uncovered with the growing realization of accessory proteins that might help these proteins. This review will discuss the role and type of RNA editing events in plants with an emphasis on chloroplast RNA editing, involved factors, gaps in knowledge, and future outlooks.

8.
Sci Rep ; 12(1): 20192, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424449

RESUMEN

In this contribution, five Ni(II) complexes have been synthesized from sulfonamide-based Schiff bases (SB1-SB5) that comprise bromo or iodo substituents in the salicylidene moiety. The chemical structures of these compounds were extensively elucidated by different analytical and physicochemical studies. All ligands act as bidentate chelators with ON binding mode yielding octahedral, square planar, or tetrahedral geometries. The phenolic OH at δ 12.80 ppm in the free Schiff base SB2 vanishes in the 1H NMRspectrum of diamagnetic complex [Ni(SB2-H)2] favoring the OH deprotonation prior to the chelation with Ni(II) ion. The appearance of twin molecular ion peaks ([M - 1]+ and [M + 1]+) is due to the presence of bromine isotopes (79Br and 81Br) in the mass spectra of most cases. Also, the thermal decomposition stages of all complexes confirmed their high thermal stability and ended with the formation of NiO residue of mass 6.42% to 14.18%. Besides, antimicrobial activity and cytotoxicity of the ligands and some selected complexes were evaluated. Among the ligands, SB4 showed superior antimicrobial efficacy with MIC values of 0.46, 7.54, and 0.95 µM against B. subtilis, E. coli, and A. fumigatus strains, respectively. The consortium of different substituents as two bromine atoms either at positions 3 and/or 5 on the phenyl ring and a thiazole ring is one of the reasons behind the recorded optimal activity. Moreover, there is a good correlation between the cytotoxicity screening (IC50) and molecular docking simulation outcomes that predicted a strong binding of SB2 (16.0 µM), SB4 (18.8 µM), and SB5 (6.32 µM) to the breast cancer protein (3s7s). Additionally, [Ni(SB4-H)2] (4.33 µM) has nearly fourfold potency in comparison with cisplatin (19.0 µM) against breast carcinoma cells (MCF-7) and is highly recommended as a promising, potent, as well as low-cost non-platinum antiproliferative agent after further drug authorization processes.


Asunto(s)
Antineoplásicos , Bases de Schiff , Bases de Schiff/farmacología , Simulación del Acoplamiento Molecular , Bromo , Escherichia coli , Sulfanilamida , Sulfonamidas/farmacología , Quelantes , Metales , Antineoplásicos/farmacología
9.
Plants (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616245

RESUMEN

Modern nanotechnology has been credited as one of the most significant inventions of the 21st century. Many agricultural disciplines have been affected by nanotechnology in agriculture. Pest control based on natural compounds needs to be enhanced, and enhancing plant growth under climate change conditions, with increasing periods of drought in many countries, is a very vital aim. Thus, the effect of curcumin nanoparticles (Cu-NPs) and glycyrrhizic acid nanoparticles (GA-NPs) as a foliar application under water deficit on natural infestation with the two-spotted spider mite Tetranychus urticae, plant growth and yield, anatomical and chemical parameters were investigated during this study. The obtained results revealed that drought stress over the two studied seasons significantly increased the population of T. urticae and decreased all morphological and yield characteristics. The application of three mM GA-NPs reduced the mite population average by 39% while using the same concentration of Cu-NPs caused a 33.9% reduction percentage under drought stress. Using 1 mM GA-NPs gave the highest averages of plant height, number of branches, and leaves/plant fresh and dry weight. Moreover, the number of pods, 100 seed weight and seed yield (kg/ha) increased significantly as a result of spraying with GA-NPs under water deficit. From the results, water deficit decreased the values of the leaf and stem anatomical parameters. Treatment with Cu-NPs or GA-NPs under drought stress increased the thickness of mid-vein, xylem, and phloem tissues. Likewise, such treatment increased stem diameter due mainly to the increase in the thickness of cortex, phloem, and xylem tissues compared with the control. Spraying plants with GA-NPs at 1 mM increased the percentages of nitrogen, phosphor, and potassium in seeds in addition to total chlorophyll. Moreover, glutamate, aspartate, leucine, arginine, Lysine, glycine, tyrosine, tryptophan, and methionine concentrations did not differ significantly (p > 0.05) in response to all the studied levels of Cu-NPs or GA-NPs either under normal irrigation or drought condition. In light of these findings, researchers and producers should apply and test both Cu-NPs and GA-NP as nano-fertilizer natural sources on economically viable crops.

10.
Mol Biol Rep ; 48(8): 6057-6064, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34374896

RESUMEN

BACKGROUND: Nad dehydrogenase complex in mtDNA has a significant role in cellular respiration. One of the largest subunits in the complex is subunit 5 (Nad5). METHODS AND RESULTS: Four cDNAs of the Hordeum vulgare subsp. spontaneum nad5 gene have been characterized and subjected to four phases of 0.5 M salinity, at 0 h (control, accession no. MT235236), after 2 h (acc. no. MT235237), after 12 h (acc. no. MT235238) and after 24 h (acc. no. MT235239). Utilizing raw data from RNA-seq, ten RNA editing sites were reported. Seven sites have common editing from C to U in positions (C1490, C1859, C1895, C1900, C1901, C1916, C1918). A rare editing event U to C was detected in two positions (U1650 and U1652) and a novel editing event U to G was for the first time in positions nad5-U231. The highest editing level was shown in 2 and 12 h after salinity exposure. After 24 h, these edits were disrupted, possibly due to the launch of the programed cell death mechanism. However, the RNA editing in positions U1650, U1652 and U231 was fixed at all exposure times. CONCLUSIONS: Although study clarified the role of salinity stress in nad5 RNA editing sites, the main achievements are first report of U to G RNA editing in plants at position U231 and first report of U to C editing in the nad5 gene at U1650 and U1652.


Asunto(s)
ADN Mitocondrial/genética , Hordeum/genética , NADH Deshidrogenasa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Citosina , Guanosina , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , NADH Deshidrogenasa/metabolismo , Proteínas de Plantas/genética , Plantas/genética , ARN/genética , Edición de ARN/genética , Estrés Salino/genética , Homología de Secuencia de Aminoácido , Uracilo
11.
J Genet Eng Biotechnol ; 18(1): 49, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32915330

RESUMEN

BACKGROUND: RNA editing is common in terrestrial plants, especially in mitochondria and chloroplast. In the photosynthesis process, NAD dehydrogenase plays a very important role. Subunit 2 of NADH-dehydrogenase is one of the major subunits in NAD dehydrogenase complex. Using desert plant Calotropis (Calotropis procera), this study focuses on the RNA editing activity of ndhB based on light time. RESULTS: NdhB (NADH-dehydrogenase subunit 2) gene accession no. MK144329 was isolated from Calotropis procera genomic data (PRJNA292713). Additionally, using RNA-seq data, the cDNA of the ndhB gene of C. procera was isolated at three daylight periods, i.e., dawn (accession no. MK165161), at midday (accession no. MK165160), and pre-dusk (accession no. MK165159). Seven RNA editing sites have been found in several different positions (nucleotide no. C467, C586, C611, C737, C746, C830, and C1481) within the ndhB coding region. The rate of these alterations was deferentially edited across the three daylight periods. RNA editing rate of ndhB gene was highest at dawn, (87.5, 79.6, 78.5, 76, 68.6, 39.3, and 96.9%, respectively), less in midday (74.8, 54.1, 62.6, 47.4, 45.5, 47.4, and 93.4%, respectively), and less at pre-dusk (67, 52.6, 56.9, 40.1, 40.7, 33.2, and 90%, respectively), also all these sites were validated by qRT-PCR. CONCLUSION: The differential editing of chloroplast ndhB gene across light periods may be led to a somehow relations between the RNA editing and control of photosynthesis.

12.
Mol Biol Rep ; 47(5): 3857-3865, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32358688

RESUMEN

Nad complex plays a very important role during cellular respiration. nad3 (nad dehydrogenase subunit 3) is one of the biggest subunits in this complex. Four cDNAs of nad3 gene were characterized in Hordeum vulgare subsp. spontaneum at exposed to four periods of 500 mM salinity, 0 h or control (accession no. MN066165), after 2 h (accession no. MN066166), after 12 h (accession no. MN066167) and after 24 h (accession no. MN066168) using RNA-seq raw data. Seventeen RNA editing sites were found in positions (or nucleotide nos. C5, C39, C44, C61, C62, C79, C80, C147, C185, C190, C191, C208, C209, C275, C317, C344, C349) within the nad3 coding region. These alterations represent differential editing at four exposure times. The maximum editing rate was revealed 2 and 12 h after salinity exposure. However, these edits were disrupted after 24 h probably due to the initiation of program cell death machinery. We found that RNA editing not only improved protein function but also may improve codon bias by altering the nucleotide without any change in amino acid. Characterization of pentatricopeptide repeat-containing protein At4g13650 (PPRSp1) in wild barley helped us to understand the behavior of editing sites C190 and C191 under salinity. Position - 6 in cis-element upstream editing sites of C155, C190 and C191 may be vital to the editing process in these sites by PPRSp1 protein. The differential editing of this gene under salinity led to a relationship between RNA editing and cellular respiration regulation.


Asunto(s)
Hordeum/genética , NADH Deshidrogenasa/genética , Proteínas de Plantas/genética , Edición de ARN/genética , Secuencia de Aminoácidos , Secuencia de Bases/genética , Respiración de la Célula/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hordeum/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , NAD/genética , NAD/metabolismo , NADH Deshidrogenasa/metabolismo , Sistemas de Lectura Abierta , ARN/genética , Salinidad , Transcripción Genética
13.
Saudi J Biol Sci ; 26(5): 1078-1083, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31303843

RESUMEN

Black cutworm (BCW) is an economically important lepidopteran insect. The control of this insect by a Bt toxin and the understanding of the interaction between the Bt toxin and its receptor molecule were the objectives of this research work. A gene coding for a Vip3A receptor molecule was identified, characterized, and cloned, from the brush border membrane vesicles (BBMV) of the BCW. The nucleotide sequence analysis of the cloned putative Vip3A-receptor gene revealed that the gene was 1.3-kb long and exhibited no homology with any gene in the gene bank. We succeeded in identifying and characterizing most of the Vip3A-receptor gene sequence; and the nucleotide sequence analysis of the cloned putative Vip3A-receptor gene (accession no. KX858809) revealed about 92% of the expected sequence was recovered, which exhibited no homology with any gene in the GenBank.

14.
Steroids ; 141: 1-8, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414421

RESUMEN

Most scientific studies on Calotropis procera refer to the plant as an important source of pharmaceutical compounds and its valuable benefits in medicine. One of the most important substances in this plant is the potential immunostimulant ß-sitosterol (BS) that acts in improving human health. This study focused on the effects of lighting before and after irrigation on the BS accumulation pathway namely steroid biosynthesis. Studying the enzymes in BS biosynthetic pathway indicated the upregulation at dawn and predusk of the SMT2 and SMO2 genes encoding sterol methyltransferase 2 and methylsterol monooxygenase, two key enzymes in BS accumulation in C. procera. The results almost indicated no regulation at the different time points of the CYP710A gene encoding sterol 22-desaturase, an enzyme that acts in depleting ß-sitosterol towards the biosynthesis of stigmasterol. RNA-Seq data was validated via quantitative RT-PCR and results were positive. The data of ultra-performance liquid chromatography-tandem mass spectrometry analysis with regard to BS accumulation also aligned with those of RNA-Seq analysis. We focused on the effects of light before and after watering on BS accumulation in C. procera. Our results show that BS accumulation is high at dawn in both dehydrated and well-watered condition. While, the BS was dramatically decrease at midday in well-watered plants. This increase/decrease in BS content is correlated with rates of expression of SMT 2 gene. This gene is a key convertor between the different branches in the cardiac glycoside biosynthesis. Accordingly, it could be suggested that BS (or one of the descendent product) may play an important role in C. procera tolerance to drought/light intensity conditions.


Asunto(s)
Calotropis/efectos de los fármacos , Calotropis/efectos de la radiación , Luz , Sitoesteroles/metabolismo , Agua/farmacología , Calotropis/metabolismo , Clima Desértico , Estructura Molecular , Sitoesteroles/química , Agua/metabolismo
15.
C R Biol ; 341(9-10): 411-420, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30472986

RESUMEN

Catharanthus roseus is a perennial herb known for the production of important terpenoid indole alkaloids (TIAs) in addition to a variety of phenolic compounds. The goal of the present work was to detect the prolonged effects of MeJA (6 uM) treatment across time (up to 24 days) in order to detect the stepwise response of MeJA-induced genes and pathways in leaves of C. rouses. Prolonged exposure of plants to MeJA (6 uM) treatment for different time points (6, 12 and 24 days) indicated that genes in the indole alkaloid biosynthesis pathway and upstream pathways were triggered earlier (e.g., 6 days) than those in the anthocyanin biosynthesis pathway and its upstream pathways (e.g., 12 days). Three enzymes, e.g., T16H, OMT, and D4H, in the six-step vindoline biosynthesis and two enzymes, e.g., TDC and STR, acting consecutively in the conversion of tryptophan to strictosidine, were activated after 6 days of MeJA treatment. Two other key enzymes, e.g., TRP and CYP72A1, acting concurrently upstream of the TIA biosynthesis pathway were upregulated after 6 days. The genes encoding TDC and STR might concurrently act as a master switch of the TIA pathway towards the production of the indole alkaloids. On the other hand, we speculate that the gene encoding PAL enzyme also acts as the master switch of phenylpropanoid biosynthesis and the downstream flavonoid biosynthesis and anthocyanin biosynthesis pathways towards the production of several phenolic compounds. PAL and the downstream enzymes were activated 12 days after treatment. Cluster analysis confirmed the concordant activities of the flower- and silique-specific bHLH25 transcription factor and the key enzyme in the TIA biosynthesis pathway, e.g., STR. Due to the stepwise response of the two sets of pathways, we speculate that enzymes activated earlier likely make TIA biosynthesis pathway a more favourable target in C. roseus than anthocyanin biosynthesis pathway.


Asunto(s)
Catharanthus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Alcaloides de Triptamina Secologanina/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Activación Transcripcional , Alcaloides de la Vinca/metabolismo
16.
Sci Rep ; 8(1): 6403, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29686365

RESUMEN

Transcriptomic analysis was conducted in leaves of Arabidopsis T-DNA insertion ERF109-knocked out (KO) mutant or plants overexpressing (OE) the gene to detect its role in driving expression of programmed cell death- (PCD-) or growth-related genes under high salt (200 mM NaCl) stress. The analysis yielded ~22-24 million reads, of which 90% mapped to the Arabidopsis reference nuclear genome. Hierarchical cluster analysis of gene expression and principal component analysis (PCA) successfully separated transcriptomes of the two stress time points. Analysis indicated the occurrence of 65 clusters of gene expression with transcripts of four clusters differed at the genotype (e.g., WT (wild type), KO ERF109 or OE ERF109 ) level. Regulated transcripts involved DIAP1-like gene encoding a death-associated inhibitor of reactive oxygen species (ROS). Other ERF109-regulated transcripts belong to gene families encoding ROS scavenging enzymes and a large number of genes participating in three consecutive pathways, e.g., phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan metabolism and plant hormone signal transduction. We investigated the possibility that ERF109 acts as a "master switch" mediator of a cascade of consecutive events across these three pathways initially by driving expression of ASA1 and YUC2 genes and possibly driving GST, IGPS and LAX2 genes. Action of downstream auxin-regulator, auxin-responsive as well as auxin carrier genes promotes plant cell growth under adverse conditions.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas , Estrés Salino , Arabidopsis/crecimiento & desarrollo , Análisis por Conglomerados , Mutación con Ganancia de Función , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación con Pérdida de Función , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Triptófano/biosíntesis , Triptófano/metabolismo
17.
Saudi J Biol Sci ; 25(3): 441-445, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29686508

RESUMEN

Black cutworm (BCW) Agrotis ipsilon, an economically important lepidopteran insect, has attracted a great attention. Bacillus thuringiensis (Bt) is spore forming soil bacteria and is an excellent environment-friendly approach for the control of phytophagous and disease-transmitting insects. In fact, bio-pesticide formulations and insect resistant transgenic plants based on the bacterium Bt delta-endotoxin have attracted worldwide attention as a safer alternative to harmful chemical pesticides. The major objective of the current study was to understand the mechanism of interaction of Bt toxin with its receptor molecule(s). The investigation involved the isolation, identification, and characterization of a putative receptor - vip3Aa. In addition, the kinetics of vip toxin binding to its receptor molecule was also studied. The present data suggest that Vip3Aa toxin bound specifically with high affinity to a 48-kDa protein present at the brush border membrane vesicles (BBMV) prepared from the midgut epithelial cells of BCW larvae.

18.
Carbohydr Polym ; 175: 565-574, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28917902

RESUMEN

In an attempt to determine the reactivity during the periodate oxidation of the vicinal amino sugar, chitosan was oxidized by KIO4 in a neutral medium. The reactivity was unexpectedly found to be low. The formation of di-aldehyde chitosan (DACT) might cause the low reactivity of chitosan oxidation. Therefore, density functional theory (DFT) calculations were carried out, which revealed that the greater stability of the cyclic amino iodate intermediate might retard the ring opening to form DACT. Furthermore, the affinity of the formation of two novel Schiff bases from the interaction of delivered DACT with two sulfa drugs [sulfanilamide and sulfathiazole] was also investigated using aldehyde content estimation. DACT and Schiff's bases were characterized by FT-IR spectroscopy, X-ray diffraction, and DTA analysis. The X-ray diffraction plane (110) of DACT at the high angle side was expanded more by sulfathiazole than sulfanilamide, indicating that sulfathiazole reacted effectively with DACT. The lowest interaction of DACT with sulfa drugs could be ascribed to the lowest aldehyde content and the intramolecular hemiacetal formation that hinders the Schiff's base condensation.


Asunto(s)
Aldehídos/química , Quitosano/química , Ácido Peryódico/química , Sulfanilamidas/química , Sulfatiazoles/química , Oxidación-Reducción , Bases de Schiff , Espectroscopía Infrarroja por Transformada de Fourier , Sulfanilamida , Sulfatiazol
19.
PLoS One ; 12(5): e0177589, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28520766

RESUMEN

Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl) across four time intervals (0, 2, 12 and 24 h) to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR) proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS) production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.


Asunto(s)
Apocynaceae/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Transcriptoma , Apocynaceae/metabolismo , Análisis por Conglomerados , Biología Computacional/métodos , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Familia de Multigenes , Hojas de la Planta , Salinidad , Tetrapirroles/metabolismo
20.
Plant Methods ; 13: 41, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28539970

RESUMEN

BACKGROUND: The main aim of this study was to improve fungal resistance in bread wheat via transgenesis. Transgenic wheat plants harboring barley chitinase (chi26) gene, driven by maize ubi promoter, were obtained using biolistic bombardment, whereas the herbicide resistance gene, bar, driven by the CaMV 35S promoter was used as a selectable marker. RESULTS: Molecular analysis confirmed the integration, copy number, and the level of expression of the chi26 gene in four independent transgenic events. Chitinase enzyme activity was detected using a standard enzymatic assay. The expression levels of chi26 gene in the different transgenic lines, compared to their respective controls, were determined using qRT-PCR. The transgene was silenced in some transgenic families across generations. Gene silencing in the present study seemed to be random and irreversible. The homozygous transgenic plants of T4, T5, T6, T8, and T9 generations were tested in the field for five growing seasons to evaluate their resistance against rusts and powdery mildew. The results indicated high chitinase activity at T0 and high transgene expression levels in few transgenic families. This resulted in high resistance against wheat rusts and powdery mildew under field conditions. It was indicated by proximate and chemical analyses that one of the transgenic families and the non-transgenic line were substantially equivalent. CONCLUSION: Transgenic wheat with barley chi26 was found to be resistant even after five generations under artificial fungal infection conditions. One transgenic line was proved to be substantially equivalent as compared to the non-transgenic control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...